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Abstract. A comparison deals with the advantages and disadvantages of the classical random-
base, exhaustive and gradient searches and presents a precise local search combined global search
control strategy including a new, systematic point selection which makes possible the escape from
local minima by time. As a demonstration electrochemically etched porous silicon (PS) samples
were investigated by spectroscopic ellipsometry (SE). The evaluation process (a global optimisation
task) was made in different ways to see the difficulties and the differences among the evaluating
possibilities. The new, topographical search (named Gradient Cube search) was compared with some
classical methods (Grid search, Random or Monte-Carlo search, and Levenberg-Marquardt gradient
search) and with two more complex algorithms (Genetic Algorithms and Simulated Annealing) by
evaluating real measurements. The application results prove that the classical methods have diffi-
culties to give enough reliability and precision at the same time in global optimisation tasks if the
error surface is hilly. There is therefore a hard need of escaping from local minima, and a need
of a systematic evaluation to avoid the uncertainty of random-base evaluation. The Gradient Cube
search is an effective, systematic hill-climbing search with high precision and so it can be useful in
ellipsometry.
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searches, Ellipsometry

1. Introduction

The technique of ellipsometry [1] is recently in a renaissance driven by an ever-
increasing demand for rapid, non-destructive analysis of surfaces and thin films.
Ellipsometry enables the determination of optical constants of materials with high
accuracy and can therefore help to solve a wide variety of problems in different
disciplines. The principle of ellipsometry was established about a hundred years
ago (Drude, 1889, 1890), but the technique has been efficient by used only recently
in parallel with the development of rotating element ellipsometers and the spread-
ing of microcomputers. The reason is simple; in lack of inverse equations there
is no possibility of directly finding the proper parameters of the optical model
of the sample from the measured spectra. A complicated multi-layer structure is
modelled as a system built up of plan-parallel thin films (see Figure 1), that can
each consist of a mixture of two (or more) different materials. The difficulties arise
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Figure 1. A multi-layer structure and its optical model. The optical model doesn’t contain the
effect of the surface roughness.

from the physical and mathematical background, as non-linear, iterative methods
are required to find the proper parameters of the optical model, because there is no
inverse equation to determine them directly from the spectra.

The theory of polarimetric reflectometry (i.e. ellipsometry [1]) is based on the
change of the polarisation state of the light reflected on the sample (see Figure 2).
The change of the amplitude can be measured asϕ (or tan (ϕ)), and the change
of the phase as1 (or cos (1)). Since the polarisation changes depend on the
wavelength (energy) of the incident light, in spectroscopy (or in spectroscopic el-
lipsometry (SE)) about 100, different wavelengths are used in the ultraviolet (UV),
visible (VIS) and near infrared (NIR) range. Hence the measured data will consist
of two spectra, tan (ϕ) and cos (1) versus the wavelength, describing the reflection
properties of the surface. These, in themselves give no direct information about the
multilayer structure or even the composition of the sample. To obtain this piece of
information an optical model of the surface must be assumed [2] (see Figure 1).
Usually an idealised optical model of the measured sample can be created from
the history of the sample (a-priori information). Most optical models use flat semi-
infinite substrates with one or more laminar adherent layers of uniform thickness
on the surface. All interfaces are assumed to be sharp, and all layers are assumed
to be composed of optically isotropic materials by using the Bruggemann effective
medium theory, [1]:

fa
ε̄a − ε̄
ε̄a + 2ε̄

+ fb ε̄b − ε̄
ε̄b + 2ε̄

= 0 (1)

wherefa andfb are the concentrations of components a and b materialsε̄a, ε̄b, ε̄ are
the dielectric functions of a, b and the mixture.
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Figure 2. The light reflection on a multi-layer sample. The ways of the light are only
demonstrative.

The goodness of the optical model is estimated by the unbiased estimator:

RMSE= 1
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where RMSE is the Root of Mean Squared Error,

N is the number of the points of the spectra,
m is the measured ands is the simulated (calculated from the optical model)
spectra,
andP is the number of the parameters in the optical model

Finding the minimal value of the RMSE, changing the variable parameters of
the optical model, leads to a classical, global optimising (error minimising) task.
The classical solutions offer either high accuracy with strong limitations (gradient
descent methods [4, 10] work properly only if the starting point is in the mono-
tone decreasing neighbourhood of the global minimum, see Figures 3 and 4), or
hill climbing ability with lower accuracy (random-base: Random or Monte-Carlo
search, Simulated Annealing (SA) [9], Genetic Algorithms (GA) [6, 7] etc.) or
more reliability but high time consumption (Exhaustive or Grid search). Combining
these searches in a sequence of either a random or a grid pre-search and then a
gradient method may give better properties, but the strategy of their alternate use
is not well defined, because the critical RMSE sophistically depends on the optical
models and the measurements. The task of the pre-searches is to find the monotone
decreasing neighbourhood of the global minimum, from where a gradient descent
method surely finds the solution. Either using more complicated optical model by
ascending the number of the parameters (higher number of search space dimension)
or increasing either the resolution (reducing the grid distances) or the size of the
search space, combinatorial explosion takes effect. Local minima and the problem
of deciding whether a minimum is local or global in the lack of knowing the RMSE
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Figure 3. Two-dimensional error ‘surface’ of porous silicon layer. The global minimum and
several local minima can be seen in a view of a porous silicon layer (see below). The X
axis means the thickness of the ps. layer and the Y axis means the porosity; i.e. the void
concentration in the crystalline silicon. The darker grey points mean lower RMSE. The small
white circles mean the global and the local minima. If the gradient descent method started
somewhere beyond the black lines it would slip in a wrong valley.

Table 1. Optical model

PS366 1. Component 2. Component Concentration Thickness

1. film SiO2 – – 5

2. film Crystalline Si Void 0.75–0.25∗ 100

Substrate Crystalline Si – – ∞
∗The 2. film was divided into 10 sublayers. A linear decreasing concentration
profile was used. It was described in two variables, i.e. the top and the bottom
concentrations.

of the solution, cause also difficulties. The random feature causes uncertainty be-
cause different evaluations, even with the same random-base method, may give
different results. A systematic search gives more reliability. Besides, the problem
of how long (how many cycles) the pre-search should be run in the lack of knowing
the range of the critical RMSE also causes difficulties and decreases the reliability
of the evaluation.
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Table 2. Random pre-search and after Gradient method compared to Gradient Cube search

PS366 Grid pre-search Random pre-search Gradient cube search

+ gradient search + gradient search

4 parameter- Starting Low High Step Grid Gradient Random Gradient Initial Gradient cube

optical model point limit limit search search search search edge search

Cycles 0 3800 3 2000 7 – 6 cube + 32

gradient steps

Comp. Time 0 4.75h +105s 2.5h +246s – 2h

RMSE 0.326 – – 0.064 0.060 0.108 0.086 – 0.042

1. film thick. [nm] 20 0 20 5 0 0.84 2.48 0.33 3.86

2. film thick. [nm] 100 50 500 25 125 107.16 101.16 3.33 269.22

2. f. upper conc. 0.75 0.25 1 .1 0.95 0.49 0.48 0.01 0.47

2. f. lower conc. 0.25 0.0 0.5 .1 0.3 0.24 0.05 0.01 0.30

PS366 Gradient cube Grid Random

search search search

RMSE after pre-search 0.042 0.064 0.108

RMSE after gradient search 0.060 0.086

Figure 4. One-dimensional error surface of a three-layer SIMOX structure [12]. The local
minima can be bigger and smaller depending on the so-called momentum of the search, which
can be modelled with the greatness of the balls. The smaller balls (2) have smaller momentum
and may slip in smaller minima, meanwhile the bigger ball (1) is able to roll over. In some
kind of gradient methods the idea of the momentum are used.
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Figure 5. Concentric two-dimensional strategy shapes. (a) 2 dimensional grid, spirals,
spheres, and cubes with constant parameter steps (linear ascending radius); (b) dimensional
randomly rotated spheres and cubes
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Figure 5. (c) homogeneously selected circle-points applying first, second, and third order (|ri |
= in∗r0) and exponential (ri | = r0∗ eiτ ) radius function whereτ=5

Table 3. Optical model

PS372 1. Component 2. Component Concentration Thickness

1. film Fine-grain poly-Si Void 0.85 20

2. film Fine-grain poly-Si Void 0.73 16

3. film Fine-grain poly-Si Void 0.61 70

Substrate Crystalline Si – – ∞

Because the above mentioned problems there is a hard need of an accurate,
systematic optimisation algorithm in ellipsometry, which is able to escape from
local minima providing higher reliability. The unique kind of searches with satis-
fied precision are the gradient-base methods, but possible local minima reduce the
reliability. The solution may be a hybrid control strategy, combining the high preci-
sion gradient-base local optimisation with a systematic global search. The control
strategy should provide a hill climbing ability in order to give higher reliability
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Figure 6. Control strategy. From the starting point (black circle) the gradient search will find
a deep local minimum. In the next steps the concentric cubes will be expanded by increasing
the edge, and in parallel the costs of the centre are increased, until a point with better criteria
function is found. From this point the gradient search will be started again and find the global
minimum. The figure is only a demonstration, not a real example. For better understanding the
area of the cubes and the curve of the gradient movement can be seen instead of the examined
points.

Table 4. Random pre-search and after Gradient method compared to Gradient Cube search

PS366 Grid pre-search Random pre-search Gradient cube search

+ gradient search + gradient search

7 parameter Starting Low High Step Grid Gradient Random Gradient Initial Gradient cube

optical model point limit limit search search search search edge search

Cycles 86400 2 130000 5 – 8 cube + 55

gradient steps

Comp. Time 30h 43s 44h 108s – 3.7h

RMSE 0.178 0.096 0.074 0.053 0.041 – 0.029

1. film thick. [nm] 5 0 20 5 15 14.8 2.34 2.56 0.33 3.45

2. film conc. 0.85 0.65 0.95 0.1 0.75 0.72 0.83 0.82 0.01 0.821

2. film thick. [nm] 20 10 60 10 20 19 31.49 29.53 1 35.308

3. film conc. 0.73 0.5 0.9 0.1 0.8 0.78 0.62 0.64 0.01 0.615

3. film thick. [nm] 16 10 60 10 40 40 22.14 28.28 1 30.102

4. film conc. 0.61 0.4 0.7 0.1 0.6 0.63 0.50 0.50 0.01 0.481

4. film thick. [nm] 70 10 60 10 30 29.9 50.97 50.62 1 45.690
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Figure 7. A two-dimensional error surface of PS366 search space. The global minimum
(white circle) and several local minima (somewhere in the darker valleys) can also be seen
in the figure.

Table 5. Optical model

1. 2. Starting Best Thickness Starting Best Porosity

Component Component thickness thickness limits porosity porosity limits

[nm] found [nm] [nm]

SiO2 – 5 – – – – –

Fine grain Void 100 48.1 0..200 0.5 0.68 0..1

poly-Si

Fine grain Void 100 40.8 0..200 0.5 0.44 0..1

poly-Si

Fine grain Void 100 41.6 0..200 0.5 0.26 0..1

poly-Si

Fine grain Void 100 95.4 0..200 0.5 0.20 0..1

poly-Si

Fine grain 100 9.7 0..200 0.5 0.59 0..1

Crystalline – ∞ ∞ – – – –

Silicon
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Figure 8. Spectra of PS366.



A COMBINED TOPOGRAPHICAL SEARCH 393

Figure 9. A two-dimensional error surface of PS372 search space. The global minimum and
a local minimum (lower right corner) can also be seen in the figure.

Table 6. Random pre-search and after Gradient method compared to Gradient
Cube search

PS990 Gradient cube GA SA Random

search search

RMSE after 12 hour-pre-search 0.041 0.056 0.078 0.095

RMSE after gradient search 0.052 0.065 0.086

even if the computation times increase. A hybrid control strategy (named Gradient
Cube search), including a new, systematic point selection, was tested to evaluate
ellipsometric measurements.

2. Gradient Cube Search

USING EXTENDED CRITERIA FUNCTIONS

The hybrid control strategy (detailed later) uses two different, local and global,
point selections alternatively. The local one, a gradient descent method (Levenberg-
Marquardt, modified by Fletcher [4, 10]) finds always the local minimum of the



394 O. POLGAR ET AL.

Figure 10. Spectra of PS372.

neighbourhood with high precision. From the local minima an expanding sys-
tematic point selection (detailed later) guaranties the escaping ability. The control
strategy always selects the local minimum (and its neighbourhood) with the best
criteria function (see Equation (3)), which contains the RMSE of the centre and an
increasing cost component representing its neighbourhood.

f1(xc) = Ch ∗h(xc)+ Cc ∗c(xc) = Ch ∗RMSE(xc)+ Ct ∗
nx

6
i=1
t (xi)+ Ce ∗ (3)

nx

6
i=1

RMSE(xi)



A COMBINED TOPOGRAPHICAL SEARCH 395

Figure 11. Results of PS366 and PS372.

Figure 12. A two-dimensional error surface of PS990 search space. The global minimum and
several local minima can be seen in the figure.
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Figure 13. Results of PS990. The starting points of the LM gradient searches determined by
different pre-searches (GA, SA, Random search). The computation time of the pre-searches
was 12 hours. The Gradient Cube search includes the gradient search therefore it gives only
one result.

wheref() means the criteria function,
h() means the expected distance from the solution, supposing the RMSE of the
solution is zero,
c() means the accumulated costs of the centre,
xc is the centre of the cube,xi are thenx examined points belonging the same
centre,Ch, Cc, Ct andCc are experimental weights.Ct was zero in the tests
because the computation times of points are equal in ellipsometry.

The h() function estimates the goodness of the centre. The extended component,
named cost functionc() combines two tasks. It partly estimates the goodness of the
neighbourhood, recording to the already examined points belonging to the area,
and partly gives preference to less known areas. So the extended criteria function
always prefers the most hopeful area. The areas are not systematically selected
before starting the search but during the systematic point selection. Each examined
point belonging to an extending cube can be a new centre of a new area if its RMSE
is better than the worse centre stored in the memory. The criteria function of a new
point is only its RMSE first, because the cost component is zero (no examined point
belonging to the new centre). If all points are memorised another type of criteria
function can be used (see Equation (4):

f2(xc) = Ch ∗h(xc)+ Cc ∗c(xc) = Ch ∗RMSE(xc)+ Ct ∗
n∑
i=1

e
−|xi−x|
τ∗dmax ∗ RMSE(xc)

(4)



A COMBINED TOPOGRAPHICAL SEARCH 397

Here each examined point belongs to each centre reverse proportionally with the
distance between the point and the centre. In Equation (4) an exponential propor-
tionality can be seen. In the comparison tests the first function (Equation 3) was
used.

POINT SELECTION OF GLOBAL SEARCH

The expanding point selection strategy systematically selects the points lying closer
to the centre at first, then the points with higher and higher distances from the
centre. The classical grid search and three new point selection strategies can be
seen in Figure 5a. Because of the easiest coding the cube-search was applied in the
tests. Avoiding the ‘avenues’ the areas of spheres and cubes can be rotated as can
be seen in Figure 5b. If the points are selected in equal distances from each other,
the steps can be determined as the average distances of neighbouring two areas
(circles, or cubes). See Equation (5) and Figure 5b.

Si = 1/2∗(ri+1− ri)+ (ri − ri−1) = 1/2∗(ri+1− ri−1) (5)

where ri are the radius of the ith circles

The number of points in a circle: Ni = 2∗r∗i 5/Si = 4∗r∗i 5/(ri+1− ri−1) (6)

Hence the unit degree: 360/Ni = 360/(4∗5)∗(ri+1/ri − ri−1/ri) (7)

Replacing the linear ascending radius (in cubes: edge) function with higher order
functions, close to the centre smaller and far away from the centre larger steps
can be used in order to give bigger chance to the points being closer to the centre.
The better points are closer to the centre with bigger probability in practice. The
optimal radius-function may depend on the measurement and the applied optical
model, which determine the search space. Combinatorial and exponential functions
were examined. See Figure 5c.

CONTROL STRATEGY

The alternative use of local and global searches (see Figure 6):

• Gradient movement (local search)

From the starting point (with estimated parameters) a gradient method finds first
the closest local minimum, and the local minimum will be stored in the memory
with its zero costs criteria function. Then the combined search strategy continues
with the hill climbing point selection.

• Hill-climbing point selection (escaping from local areas)
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After a local minimum found, the combined search continues with the systematic
hill climbing point selection, i.e. expanding concentric cubes. The centre of the
cubes is always a local minimum with the best (least) criteria function. Examin-
ing the area of the cubes the costs of the centre point is accumulating, and so
the criteria function is increasing (becoming worse). The points are stored in the
memory sorted by their criteria functions. A duplicate point examination, caused
by the crossing areas of different cubes, is not possible because of the use of a
point register look-up-table. Each newly examined point has zero costs until being
a centre. If a point with best criteria function is found:

a) If the point is new (not stored in the memory), a gradient search will take
place again to move the point into the local minimum of its neighbourhood (gradi-
ent movement), and instead of storing the found point, the local minimum will be
stored only if it is also new. The edge of the next cube will be the initial one (the
smallest) again.

b) If a previously stored local minimum becomes the best (because the costs of
the others become higher) its extension continues with a bigger edge.

Pseudocode

Enter the initial point and step of each parameter
Enter the limitation of the search (time, points, RMSEcrit etc.)
Start gradient search
Memorise the local minimum with zero costs
REPEAT

Select the best point (bp) and its attributes (edge of the actual cube, position of
the actual point on the area, costs, fcrit ) from the memory regarding the criteria
functions
Select the next point (bpi ) on the area of the actual cube of the point bp if it
isn’t yet examined
IF the last point of the area examined THEN

Increase the edge of the cube and continue with the first position again
END IF
Compute the RMSE of the point
Increase the costs and so the criteria function (fcrit) of bp
IF fcrit(bpi ) < fcrit(worst) THEN

Start a gradient search
IF the found local minimum (pl) isn’t yet stored in the memory THEN

Put it in with zero costs, initial edge and first position (exchange with the
last one if the memory is full)
Make the memorised points in order by their criteria functions

END IF
END IF
UNTIL limitation (time, points, RMSEcrit etc.)
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3. Results

In order to demonstrate the method, described before, 3 different measurements
comprising 3 optical models were used. Each sample was electrochemically pre-
pared porous silicon (PS) with different porosities [5]. Porous silicon can be pro-
duced from crystalline silicon by electrochemical dissolution in hydrofluoric acid.
PS was formed on p-type silicon wafers by anodisation in ethanol containing aqueous
electrolyte with HF contents. The duration of the etching is typically several seconds
or minutes. The ellipsometric measurements were made by the use of a rotating
analyzer ellipsometer. Two optically different types of silicon forms, a bulk-type
silicon (c-Si) and a fine-grain polycrystalline silicon with enhanced absorption in
the grain boundaries (p-Si) needed to be mixed with voids in the appropriate ratio,
and the PS had to be divided in depth in several different sections in order to
obtain the best fit. The first PS measurement (named PS366) was modelled first
as a mixture of void and crystalline silicon. See the optical model in Table 1 and
a two-dimensional error surface of the search space in Figure 7. The spectra and
the results can be seen in Figure 8 and 11.The complex refractive index of the
layer was calculated by Bruggeman effective medium approximation [1] by using
void and crystalline silicon as end-points, and a linear decreasing concentration
profile was applied. Evaluating the second measurement (named PS372) the PS
was considered as a three-layer structure of mixtures of fine-grain polycrystalline
silicon [8] and void. (See the optical model in Table 3 and a two-dimensional error
surface of the search space in Figure 9.) The spectra and the results can be seen
in Figures 10 and 11. The third measurement (named PS990) was modelled as
a multi-layer structure build from thin, parallel films of mixtures of fine-grain
polycrystalline silicon and void in order to consider the change of concentration
in depth. See the optical model in Table 5 and a two-dimensional error surface of
the search space in Figure 12. The results can be seen in Figure 13. In this case the
SiO2 film on the top of the sample was also considered.

The search spaces were the same when the Grid search, the Random search
and GA were used. SA and the Gradient Cube search can move the centre points
anywhere, so that they work with unlimited search spaces. Avoiding the combinat-
orial explosion, the grid distances had to be selected much larger in the Grid search
than the initial edges of cubes in the Gradient Cube search, which results bigger
errors.

Started at the initial points the Levenberg-Marquardt gradient descent method
stopped on high level local minima in all cases, which proved that the presence of
local minima and the need of more complex search algorithms. Started at low-error
points found by pre-searches the L-M gradient method slipped in local minima in
all cases. However the Gradient Cube search required approx. 2 hours in the first
case, and less than 4 h in the second case and found better points (with lower
RMSE) which can be seen in Figure 8. The simulated curves are closer to the
measurements (see Figure 10). Unfortunately we can’t state firm that these points
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are sure to be the real global minima, of course, but without any doubt they mean
better optical model and give more precise information about the samples.

4. Conclusion

The use of Grid and the Random searches as pre-searches of gradient method
seemed to be less effective in ellipsometry evaluating porous silicon samples. The
SA and GA are more complex algorithms with better efficiencies and they may be
powerful if the dimension of the search space is higher.

The Gradient Cube search seemed to be an effective global search algorithm in
ellipsometry offering unlimited parameter space search by time, global escaping
hill climbing ability due to the expanding-cube-point selection strategy (global
search), and enough precision due to the involved gradient method (local search).
It may useful in those cases if the optical model is complicated enough, the dimen-
sion of the search space is medium (5-7 parameters) and in consequence the error
surface is hilly. If the dimension of the search space is low enough and the a-priori
knowledge is precise the single use of a gradient search may also be powerful.
If the dimension of the search space is too large (high number of optical model
parameters) the Gradient Cube search needs long computation time, and therefore
it’s better to use a random-base pre-search and then a gradient search.
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